首页

欢迎

 

Welcome

欢迎来到这里, 这是一个学习数学、讨论数学的网站.

转到问题

请输入问题号, 例如: 2512

IMAGINE, THINK, and DO
How to be a scientist, mathematician and an engineer, all in one?
--- S. Muthu Muthukrishnan

Local Notes

Local Notes 是一款 Windows 下的笔记系统.

Local Notes 下载

Sowya

Sowya 是一款运行于 Windows 下的计算软件.

详情

下载 Sowya.7z (包含最新版的 Sowya.exe and SowyaApp.exe)


注: 自 v0.550 开始, Calculator 更名为 Sowya. [Sowya] 是吴语中数学的发音, 可在 cn.bing.com/translator 中输入 Sowya, 听其英语发音或法语发音.





注册

欢迎注册, 您的参与将会促进数学交流. 注册

在注册之前, 或许您想先试用一下. 测试帐号: usertest 密码: usertest. 请不要更改密码.


我制作的 slides

Problem

随机显示问题

Problèmes d'affichage aléatoires

分析 >> 微分方程 >> 偏微分方程
Questions in category: 偏微分方程 (Partial Differential Equations).

Langevin equation

Posted by haifeng on 2018-03-09 20:41:39 last update 2018-03-09 20:50:58 | Answers (0)


The Fokker-Planck Equation

Scott Hottovy

6 May 2011

http://www.math.wisc.edu/~shottovy/NumPDEreport.pdf


1 介绍

根据牛顿第二定律, 布朗粒子(Brownian particle)可从微分方程导出, 称为 Langevin equation, 由下式给出

\[
m\frac{d^2 x}{dt^2}=F(x,t),
\]

这里的力 $F(x,t)$ 是确定性力和随机力之和. 于是粒子在时间 $t$ 的位置 $x(t)$ 是一个随机过程(stochastic process). 我们的目标是理解这个模型中的转换概率(transition probabilites).

 

1.1 Fokker-Planck 方程的推导

设 $p(x(t))$ 是随机过程 $x(t)$ 的概率密度(probability density). 我们假设 $x(t)$ 是一个 Markov 过程. 也就是说,

\[
p\Bigl(x(t_3)=x_3\biggr| x(t_1)=x_1, x(t_2)=x_2\Bigr)=p\Bigl(x(t_3)=x_3\biggr| x(t_2)=x_2\Bigr)
\]

 

 


以上文字翻译自

References:

http://www.math.wisc.edu/~shottovy/NumPDEreport.pdf